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ABSTRACT—Proinflammatory cytokines are now thought to play a key role in the pathophysiology of chronic heart failure,
driving both symptomatic presentation and disease progression. We propose that this proinflammatory state, in turn, may
be sustained through a chronic release of enterically derived bacterial endotoxin. Human trials have indicated that bacterial
decontamination of the gut with concomitant decrease in lipopolysaccharide (LPS) has a positive outcome on heart
disease patients. Antiendotoxin antibodies may thus represent therapeutic agents in this setting. Previously, antiendotoxin
antibodies were targeted to the inner hydrophobic lipid A moiety of endotoxin in an attempt to neutralize its toxicity. These
antibodies failed because they lacked specificity and bound to LPS weakly. In contrast, our studies on antiendotoxin anti-
bodies have revealed that antibodies targeted to the hydrophilic oligosaccharides of the endotoxin have the potential to bind
specifically with high affinity. Development of immunotherapeutics that can reduce systemic LPS or other agents, such as
bactericidal/permeability-increasing protein that can neutralize LPS and limit inflammation safely, will enable the role of LPS
in chronic heart failure to be elucidated and may pave the way to develop a new generation of effective therapeutic agents
that may be directed to the treatment of chronic heart failure.
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INTRODUCTION

Chronic heart failure (CHF) patients with edema have ele-

vated plasma concentrations of bacterial endotoxin (lipopoly-

saccharide [LPS], with significant activation of the immune

system (1, 2) The LPS acts on systemic immune-competent

cells to potently stimulate the production of proinflammatory

cytokines (PICs) (3). Some PICs, such as tumor necrosis

factor-! (TNF-!) and nitrous oxide (NO), are also cardiosup-

pressors, which may also exacerbate the course of the disease.

Both LPS and the subsequent inflammatory response can alter

the permeability of the gut, allowing more LPS to leak into

the blood (4Y7). This endogenous LPS further stimulates in-

flammatory responses and results in a positive feedback loop

that may perpetuate the chronic inflammatory state and its

associated depression of cardiac function. Although inflam-

mation in heart disease is now well documented (8, 9), the

role of LPS in heart disease is poorly delineated, and

published data are often conflicting. In CHF patients, both

desensitization to LPS with a concomitant decrease in the

inflammatory response (10), and an increase in sensitivity to

LPS with an increase in TNF-! production and a decrease in

HLA-DR (a major histocompatibility complex, class II, cell

surface receptor) expression in monocytes (11) have been

observed. More recently, human studies suggest that enteri-

cally derived LPS drives inflammation: decontamination of

the gut being associated with both a reduction in intestinal

LPS and a decline in CD14+ monocyte levels (12). In

addition, selective digestive decontamination of the gut before

cardiopulmonary bypass reduced the level of LPS and PICs

(13) and improved postoperative outcome (14).

In this review, we put forward the argument that LPS is an

underestimated and important contributor to the pathophysiol-

ogy of CHF. In addition, we propose that agents that can either

neutralize or decrease systemic LPS and lower the chronic

inflammation observed in CHF patients would limit progression

of heart disease and have a positive impact on patient mortality.

HEART FAILURE AND THE SYSTEMIC
INFLAMMATORY RESPONSE

Low-grade systemic inflammation is a feature of both acute

and chronic heart failure (15), with elevation in circulating

PIC levels (16), such as TNF-! (17), interleukin (IL)-6 (15),

and IL-1 (18), being associated with worsening of symptoms,

hospital readmission, and even mortality (19). Increasing

evidence indicates that this association may be causal. The

PICs suppress myocardial contractility (20Y25), a process in

which cytokine-stimulated generation of local NO through

increased expression of inducible NO synthase (20, 26Y28)

may play a key role. This leads to a depression of excitation-

contraction coupling (29) and thus maximum extent and peak

velocity of cardiomyocyte shortening (21)Veffects due, at

least in part, to alterations in mitochondrial respiration

(21, 26, 30Y36). Additional associated reductions in muscle

resting membrane potential and sodium-potassium gradient

(37) and mitochondrial density (37), impaired cellular

substrate metabolism (37), a rise in the expression of matrix

metalloproteinases and a fall in expression of their inhibitors
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(27), the potentiation of leukocyte adhesion (38), tissue

hypoxia and cell death through apoptosis or necrosis (39),

and a failure of adrenergic responsiveness (40, 41) contribute

to such cardiac impairment.

In this regard, TNF-! and IL-6 may be especially potent.

The TNF-! is produced directly by the failing heart (42Y44)

and systemically in response to other PICs. Elevated circulat-

ing levels of TNF-! are correlated to the severity of heart

disease (45Y48). The TNF-! is cardiodepressant through a

number of pathways: (1) sphingosine release and suppression

of the calcium transient (49, 50); (2) inhibition of the

phosphoinositide pathway and of pyruvate dehydrogenase

activity that reduces mitochondrial function (51); and (3)

enhancing peroxynitrite production and the levels of matrix

metalloproteinase 2 while reducing tissue inhibitor of matrix

metalloproteinase 4 in the heart (52). The TNF-! may also

engender peripheral tissue decompensation, stimulating indu-

cible NO synthase, and thus NO, skeletal muscle apoptosis,

and muscle wasting through the ATP-dependent ubiquitin-

protease pathway that degrades proteins (53). Elevated levels

of TNF-! result in upregulation of two TNF-! receptors

(TNFRs), TNFR-1 and TNFR-2, with the former predominat-

ing and thus a good predictor of short-term (54) and long-term

(19) prognosis in CHF patients (55). The plasma levels of

both these receptors are also correlated with the degree of

impairment of systemic ventricular function (56). The TNF-!
is thus implicated in "-receptor uncoupling from adenylate

cyclase, cardiomyocyte apoptosis, cardiac dysfunction, and

systemic effects, including endothelial dysfunction, reduced

skeletal muscle blood flow, and the development of anorexia

and cachexia (57Y59). Elevated TNF-! levels are thus

inversely related to functional capacity and peak oxygen

consumption (60).

Meanwhile, the PIC IL-6 is induced by diverse inflamma-

tory stimuli and their associated hormonal and cytokine re-

sponses (16, 61, 62). Produced by activated leukocytes,

fibroblasts, endothelial cells (63), and adipose tissue (64), it

is the only cytokine that stimulates the synthesis of all the

acute-phase proteins (63, 65Y67) and thus has pleiotropic

actions on cardiac function, inflammatory cell recruitment,

lipid metabolism, and endothelial function (68). Interleukin 6

also causes cardiac adrenergic refractoriness (40, 41) and

cardiomyocyte apoptosis (69), and depresses myocardial

function (25, 41). Indeed, IL-6 is viewed by some as the most

potent cytokine depressor of myocardial function of all (22).

Circulating IL-6 levels are elevated in asymptomatic (70) and

symptomatic (71, 72) CHF and correlate with impaired

functional class, poorer left ventricular function, an increase

in length of hospital stay (42, 73Y75), and mortality (19, 55,

76). Levels of IL-6 and LPS have been shown to correlate

with the severity of heart disease in adults (56). Several recent

studies have also shown that levels of IL-6 are correlated

invariably to the severity of heart disease (45Y48).

THERAPY TARGETED TO INFLAMMATION

Chronic heart failure is accompanied by an elevation in

levels of PICs and an inadequate parallel elevation in anti-

inflammatory mediators. This imbalance of cytokines has been

implicated in the development and progression of CHF, and in

the last decade, attempts have been made to modulate this

dysregulation (8). Except for one large mortality/morbidity

study (77), with a subsequent substudy (78), all studies of

immunomodulatory therapy in CHF have used small numbers

of patients and have yielded inconclusive results (79, 80).

Meanwhile, recent studies of i.v. immunoglobulin, thalido-

mide, and pentoxifylline highlight the potential benefits of

immunomodulation in CHF patients and emphasize the need

for larger, placebo-controlled mortality studies of immuno-

modulatory therapies in CHF (9).

LIPOPOLYSACCHARIDE AND INFLAMMATION

Thus, PIC levels are elevated in both acute (81) and chronic

heart failure (19, 82) and may be causative in disease and

symptom progression. Although the driving factors, which

chronically provoke such synthesis, have yet to be fully un-

derstood, a growing corpus of work implicates LPS that may be

derived from the gut in this capacity. Gram-negative bacteria

can comprise around 109 of the 1012 total bacteria colonizing

the healthy gastrointestinal tract (83). The LPS is the major

glycolipid constituent of their outer membranes. The gastro-

intestinal tract thus contains sufficient LPS (È200Y 300 mg)

to kill the host many times over as indicated from the lethal

range of nanogram per kilogram in the rabbit model (84, 85).

The LPS potently induces the expression of PICs (86, 87),

including TNF-! (88) and IL-6 (89Y93), partly through the

activation of the nuclear transcription factor nuclear factor

(NF)-.B (94). The stimulation of NF-.B by both LPS and

TNF-! results in a positive feedback loop of PIC generation

(Fig. 1). This results in a spiraling cycle of inflammation,

cardiodepression, ischemia, and damage of the villi, causing

leakage of LPS, and then more inflammation (Fig. 1). This

vicious cycle is exacerbated by LPS or gram-negative bacteria

that can act directly on the intestine to increase its perme-

ability and promote further leakage of LPS (4Y7).

Recently, the toll-like receptor (TLR) (and TLR-4, in par-

ticular) has been implicated as a key component of the innate

response in the heart (95). The TLRs are a family of receptors

that recognize molecular patterns associated with pathogens,

and several exogenous and endogenous ligands have been

identified, including LPS (96, 97), fibrinogen (98), hyal-

uronan, fibronectin, and minimally modified low-density lipo-

protein (99) and heat shock protein 60 (100). Ligand binding

leads to the activation of several kinases and NF-.B.

Enhanced monocyte and macrophage expression of costimu-

latory molecules, including B7-1 and B7-2, and PICs,

including IL-1", IL-6, IL-12, and TNF-!, have been demon-

strated as downstream effects of TLR activation (101, 102). In

this way, such ligands may initiate a powerful immune

response even in the absence of infection.

Although the importance of TLRs in innate immune

responses to microbes is well established, their role in heart

disease processes is not well understood. An enhanced in vitro
response of monocytes to LPS has been demonstrated in

patients with recurrent unstable angina (103) and a role for
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TLR-4 in outward arterial remodeling (104). It has also

recently been shown that there is an expansion of circulating

TLR-4Ypositive monocytes in patients with acute coronary

syndrome (105). We therefore reason that TLR-4 and LPS

may have an important role in the pathophysiology of heart

disease.

THE ROLE OF MONOCYTES IN INFLAMMATION

Chemokines have a critical role in basal and inflammatory

leukocyte trafficking, and their main targets are cells derived

from bone marrow (106, 107). In addition to recruitment of

blood cells, chemokines also induce responses beyond the

immune system. For example, there is activation of endothe-

lial cells that can result in angiogenic or angiostatic effects

(108) and various responses in smooth muscle cells, fibro-

blasts, neurons, and epithelial cells. Produced in response to a

proinflammatory stimulus, the chemokine CCL2/monocyte

chemoattractant protein 1 recruits monocytes locally and

induces them to leave the bloodstream and enter the surround-

ing tissue, becoming tissue macrophages. Other mediators such

as complement, tissue growth factor-", free radicals, and other

CC chemokines may also have a role in regulating monocyte

infiltration. The CC chemokines or " chemokines have two

adjacent cysteines near the amino terminus of the protein and

bind to CC chemokine receptors, of which 10 have been

discovered to date, designated CCR1 to CCR10. These

receptors are expressed on the surface of different cell types,

allowing their specific attraction by the chemokines. The CC

chemokines induce the migration of monocytes and other cell

types, such as natural killer cells and dendritic cells. There are

two principle subsets of human monocytes, the CD14+/CD16j

and CD14lo/CD16+, which raises the possibility that different

chemokine profiles elicited by the inflammatory response may

recruit distinct subsets of monocytes in heart disease (109).

Stimulated monocytes and macrophages, T cells, and mast

cells synthesize a variety of PICs that include IL-1", IL-6, and

TNF-!. Cytokines upregulate endothelial cell adhesion mol-

ecules, recruit leukocytes, and induce smooth muscle cell

migration and proliferation (110). Cytokines act systemically

to initiate the acute-phase response, upregulating proteins

involved in inflammation and hemostasis and resulting in a

proinflammatory and prothrombotic state. Expression of tissue

factor by inflammatory cells potently induces thrombus

formation upon plaque rupture, leading to acute coronary

syndromes. Inflammatory biomarkers, including C-reactive

protein, complement proteins, IL-6, and white blood cell

count predict the development of acute coronary syndromes.

The C-reactive protein has been widely studied and consis-

tently predicts future acute coronary syndrome events.

HOW DOES LPS TRIGGER INFLAMMATION?

An understanding of the structure of LPS and the molecular

pathways involved in the triggering of inflammation may

further aid in the development of anti-LPS therapeutics to

study LPS in CHF patients and to develop effective

immunotherapeutics to limit progression of CHF. The LPS

binding protein (LBP) and CD14 play key roles in promoting

innate immunity to gram-negative bacteria by transferring

LPS to the signaling receptor complex, MD-2/TLR-4 (111,

112). In the absence of plasma, LPS binds poorly to

FIG. 1. Proposed role of bacterial LPS in CHF. iNOS indicates inducible NO synthase.

FIG. 2. The LPS structure and formation of aggregates.
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leukocytes and only provokes a response at very high

concentrations (113, 114). This is because LPS is an

amphipathic molecule that forms aggregates in aqueous

buffers with the lipid A on the inside and unable to bind to

cells and trigger inflammation (Fig. 2) (115Y117).

In plasma, two mutually exclusive proteins interact with

LPS and modulate its biological activity. One of these, the

LBP disassociates a single molecule of LPS from the

aggregated LPS (Fig. 3). This LPS:LBP complex then

interacts with the CD14 protein, possibly in combination

with albumin (118, 119), TLR-4 (96, 101, 121), and MD-2

(122) proteins to initiate the inflammatory response (123, 124)

(Fig. 3). The LPS:LBP complex also transfers LPS monomers

to high-density lipoprotein particles and clearance of plasma

LPS via the liver (125, 126) (Fig. 3). The other, bactericidal/

permeability-increasing protein (BPI) also interacts with LPS

aggregates, but unlike LBP, it stabilizes LPS aggregates and

blocks the binding of LBP (127), and averts the inflammatory

response mediated by LPS (128, 129).

LIPOPOLYSACCHARIDE IN HEART FAILURE

In CHF, there is reduced cardiac output that decreases the

flow of blood to the tissues (130). The gut is particularly

affected as it has a high demand for oxygen (up to 20% of the

whole body’s requirement) and thus readily becomes hypoxic

(131). The CHF-associated gut mucosal edema further

compromises gut function (1). The architecture of the gut

mucosal microvasculature exposes the tip of the villus to the

highest risk of ischemia in low flow states (132, 133). This

causes necrosis and apoptosis of the epithelial cells at the tip

of the villi (134, 135). The integrity of the mucosal epithelium

is compromised and intestinal barrier dysfunction (136)

ultimately allows translocation of endotoxin and gut bacteria

(137Y139). Even surgical anesthesia can cause mild ischemia

of the gut and translocation of LPS (140). The possibility that

LPS triggers inflammation and cytokine production in heart

failure was first proposed by Anker et al. (2). Since then,

elevated levels of LPS in CHF have been reported in many

studies (1, 56, 88, 141). The amount of LPS in the circulation

is sufficient to cause increased levels of PICs and the

symptoms observed in CHF patients (56, 141). It has also

been shown, at least in children, that the severity of the

clinical outcome increases with higher levels of plasma LPS

(142). Significant myocardial depression has been demonstra-

ted in experimental human endotoxemia (143) by i.v. infusion

with 4 ng/kg body weight of reference endotoxin from

Escherichia coli 0113 (144). This dose of the reference

endotoxin is a safe and well-recognized method of modeling

the cardiovascular manifestations of sepsis and septic shock in

healthy human volunteers (145).

Evidence for the role of endogenous LPS derived from the

gut in inflammation has been obtained from a pilot study

where patients with severe CHF had bacterial decontamina-

tion of the gut. This reduced intestinal LPS and decreased the

inflammatory state (12). Decontamination of the gut before

cardiopulmonary bypass was found to be associated with

reduced levels of LPS and PICs (13), a finding that has been

associated to an improved outcome when used in the

postoperative period (14).

INTERVENTION THERAPY AGAINST LPS

Because we propose that endogenous LPS may be an

important factor responsible for the underlying chronic

inflammation seen in CHF, immunotherapeutic intervention

strategies targeted to LPS may be beneficial to CHF patients.

However, such strategies have only been applied to the

treatment of sepsis, where the administration of antibodies,

or passive immunization, to reduce levels of LPS gave

variable and disappointing findings (146Y149). An analysis

of these trials revealed that many of them lacked detailed

follow-up assessments of serum antibody and LPS levels to

establish the sufficiency of antibodies administered and their

ability to reduce plasma LPS levels (148). Thus, a benefit may

have been achieved if sufficient anti-LPS antibodies had been

administeredVa conclusion supported by the findings that

endotoxemic patients had a poorer prognostic outcome when

their anti-LPS antibodies were depleted before subtoxic levels

of plasma LPS were attained (150Y154).

Other factors that would influence the efficacy of the

antibody therapy are the target site, or epitope, and strength of

binding. The epitopes of the monoclonal antibodies (mAbs)

E5 (Xoma, Berkley, Calif) and HA-1 A (Centocor, Malvern,

Pa) used in these trials were in the lipid A, as the concept was

to neutralize the toxicity of LPS by blocking the binding of

lipid A to cells (155). Unbelievably, subsequent in vitro
analyses of mAbs E5 and HA-1A revealed that they exhibited

FIG. 3. Disaggregation of LPS micelles through binding of LBP. HDL indicates high-density lipoprotein.
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weak binding to LPS (156), neutralized LPS poorly (157,

158), bound nonspecifically to hydrophobic ligands, such as

lipoproteins and cardiolipin (159), and to a variety of human

B-cell and erythrocyte proteins (160, 161), and were toxic in a

canine model of septic shock (162).

In contrast, anti-LPS antibodies with epitopes in the

hydrophilic outer domain of the LPS have the potential to

have very high affinities that are in the nanomolar range. For

example, the antimeningococcal LPS mAb 9-2-L379 that

targets the hydrophilic domain has a binding affinity, with a

dissociation constant of 7.5 nM (163). The binding affinity

was accurately determined by us using real-time kinetic

analysis with a resonant mirror biosensor (164). Thus, we

propose that the lack of demonstrable effect of the anti-LPS

strategies to date represents inappropriate immunotherapeutics

with poorly designed preclinical evaluation.

Alternatively, various other substances (some of which are

licensed for use in humans) have been shown to neutralize or

limit the inflammatory effects of LPS, for example, BPI or

synthetic peptides derived from BPI (165Y168) can be tested

in animal models to establish an association between LPS and

the heart. If such as association is established in the animal

model, clinical trials on heart patients could be initiated

because BPI is licensed for human use.

CAN NEW ANTI-LPS IMMUNOTHERAPEUTICS
BE SUCCESSFUL?

The lessons that can be learned from the trials of anti-LPS

immunotherapeutics to treat sepsis are that antibodies with

poor binding affinity and insufficient specificity are unlikely

to be effective. In addition, trials should be carefully designed

to determine their efficacy and to establish whether sufficient

levels of antibody were administered to reduce levels of

systemic LPS. We postulate that high-affinity and specific

antibodies that target LPS could be developed if their epitope

lies in the immunogenic hydrophilic portion of LPS (169,

170) as opposed to the hydrophobic lipid A moiety used in the

past. This proposal is supported by a human trial of active

immunization against LPS sepsis, where a reduction in

mortality was achieved with human antiserum raised by

vaccinating with the core region of E. coli LPS (171). Most

of the polyclonal antibody population would have been

against the core hydrophilic sugars of the LPS with only a

smaller subset against the less immunogenic lipid A moiety. A

subsequent study in mice and rabbit infection models by

Kirkland and Ziegler (172) showed that a mAb to an

oligosaccharide determinant of LPS from E. coli 0111:B4

could protect from gram-negative infection. Active immuni-

zation of mice with the core of LPS from four gram-negative

bacterial strains that colonize the gut: E. coli K12, E. coli R1,

Pseudomonas aeruginosa PAC608, and Bacteroides fragilis
showed protection against a lethal challenge of E. coli O18

LPS (173). Vaccines have also been developed against E. coli
J5 (174), Shigella sonnei and Shigella flexneri 2a (175, 176),

Salmonella typhimurium (177), and Vibrio cholerae (178), as

well as to other human pathogens such as P. aeruginosa (179),

Pasteurella multocida (180), Brucella melitensis (181), and

Francisella tularensis (182). The efficacy of a single mAb

targeted to a hydrophilic oligosaccharide protection of the

LPS has yet to be confirmed in human trials.

Although these vaccination studies indicate that effective

anti-LPS antibodies can be generated, the use of LPS as a

vaccine component may be problematic because it is poorly

immunogenic and as little as 4 ng/kg body mass can be toxic.

The LPS may also mimic human antigens to camouflage the

bacterium from host defenses and thus has the potential to

raise autoimmune responses (183, 184). In an alternative

strategy toward the development of safer anti-LPS vaccines,

we have used peptide mimics of LPS. These were identified

by direct interaction with a functional high-affinity mAb (163)

with known specificity and whose epitope is within the core

region of LPS that is accessible in the intact organism and

does not include the toxic lipid A (185, 186).

To date, these anti-LPS immunotherapeutic strategies have

only been tested against sepsisVwith levels of systemic LPS

that are much higher than in the inflammatory state observed

in heart disease. Before such studies are extended to CHF

patients, anti-LPS antibodies need to be developed that bind to

LPS specifically and with high affinity. Using these immuno-

therapeutics to reduce systemic LPS will then allow the role

of LPS in heart disease to be established in a suitable animal

model, for example, in rabbits, as they are the only rodents

with LPS sensitivities similar to humans. The potential of

anti-LPS immunotherapeutics that can clear LPS rapidly and

safely from the circulation can be determined. Subsequently,

they may then need to be refined and licensed for human

clinical trials. For example, if these antibodies were produced

in an animal, they could be humanized by replacement with a

human antibody constant (Fc) domain (187).

CONCLUDING REMARKS

Chronic heart failure afflicts millions of people worldwide.

Despite modern pharmacotherapy, mortality remains high:

40% die within a year of diagnosis, and a similar percentage

of those worst affected annually thereafter. Similarly, asso-

ciated morbidity is also high: annually, CHF accounts for 2%

of all hospital inpatient days and 5% of all emergency medical

admissions to hospital. Hospital admissions due to heart

failure are projected to rise by 50% during the next 25 years

mainly caused by the aging of the population. This does not

include the rising tide of obesity in developed countries that is

an important risk factor of heart disease. The health care costs

per patient increase from 8 to 30 times in cases of severe

disease compared with those with mild symptoms. Additional

social and financial burdens to patient, carers, family, and

state are likely to be even greater.

Many processes are activated in CHF but the causal role for

LPS has yet to be established, and no effective anti-LPS inter-

vention therapy for any disease has been developed, despite

evidence to show that it will be beneficial and is an intensive

research in this area. Preliminary studies on gut decontamina-

tion that reduces systemic LPS are beginning to reveal

tantalizing evidence for a role of LPS in CHF. We propose

that the development of safe anti-LPS immunotherapeutics that
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can reduce LPS and inflammation is within our grasp and that

these will pave the way to elucidate the role of LPS in the

pathophysiology of heart disease. These immunotherapeutics

coupled with the potential that agents such as BPI (that can

limit LPS-mediated inflammation) may have on heart disease

will provide new technological platforms for intervention

studies that can limit the progression of heart disease and

reduce mortality.
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